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Introduction: what are graphs?

e  Graphs are abstract objects which represent relationships among entities made up of nodes and edges

Graphs can represent heterogeneous data and complex relationships
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Distributed graph platforms

Distributed graph platforms are for handling millions and billions of nodes and edges

Graphs are partitioned and distributed across hosts
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q ChEMBL 30 Graph Schema

2.3M nodes
37.3M edges

76 node types
49 relation types
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OpenCypher introduction

s
(96 openCypher

e  OpenCypher is the most popular open source graph query language

e A query language like SQL but customised to search graph patterns

e Example:

- MATCH (a:compound)-[r:has activity against]- (b:target{name:”target”}) IRETURN count (r)I

Finds all compounds which are known to
have activity against a given target
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q Katana OpenCypher rdkit integration

e We extended OpenCypher with the following functions:
—  Find minimum common substructure
— RDK fingerprint
— Morgan fingerprint
— Topological torsion fingerprint
— Ergfingerprint
—  Tanimoto similarity
—  Similarity search

— Substructure search
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Similarity indexing

Katana 24x faster than PostGres

For similarity search indexing we use distributed

. 24
minhash LSH
22
Benchmarks were run on a single machine with 2
1K random query molecules S
o 18
M # Load indices qJ
#g.query("CALL rdkit.loadIndices()") qJ
smiles_batch = [::ggc;ucé(—nignfzc;;?;g>c;1cw"ic" o 16 -
T B e B (D 2eEF wn

#similarity search
res = g.query(f"UNWIND {repr(smiles_batch)} as smiles_batch \ 14
RETURN rdk_sim_lsh(smiles_batch, .5) as result")
for query, result in zip(smiles_batch, res['result’]):
display(Draw.MolsToGridImage([Chem.MolFromsmiles(smiles) for smiles in res.iloc[@]['result’][:5]],
subImgSize=(250,250), molsPerRow=5))

operation progress: [JJl] 52/? [326.810p/s, done]
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Substructure index

e Distributed substructure index is sharded across hosts

e  Foreach bit in the fingerprint, each host keeps a count of the number of molecules which set that bit in their pattern
fingerprint, as well as a collection of their ids.

e  The query molecule is compared to all molecules which share the least common bit with it (graph isomorphism)

e  7x faster than postgres on 1K random query molecules

Query molecule ' 1 0 1 \ 0
/ \
Molecule 1 0 0 / 0 \ 1
Molecule 2 1 0 l 1 J 1
Molecule 3 1 0 \ 0 / 0
Bit position 0 1 2 / 3

Query mo s compared to AN
molecule 2 onli ‘
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Example cypher query with heterogeneous data

Cypher:
MATCH (n: compound)-[:CID]-(:PubChem BioAssay)-[]-(:gi)-[]-(:uniprot)-[]-(gene:gene)

WHERE n.canonical smiles IN substructure search(“C(Nclcccccl)Nclcce (OcZ2cecncc2)ccl”)

RETURN gene.label, count(distinct n)

English:
For every compound-to-gene path

Where the compound contains a given substructure

Return the name of the gene and how many compounds with the given substructure interact with it
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Beyond Querying

Node classification/regression

Predict values on nodes in graph Predict graph topology

Link prediction

®—6
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TDC ADMET Benchmark Challenge

Therapeutics Data Commons (TDC)

HARVARD Georgia | - (uriec @8 Stanford

=~ gl THERAPEUTICS UNIVERSITY echc Ukibnaslts University
L/m DATA COMMONS I o Mot
| |II oot =|QV|A X ILLINOIS

https://tdcommons.ai

« ADMET Group Challenge: Absorption, Distribution, Metabolism, Excretion, and Toxicity prediction tasks

Given a drug candidate's structural information (SMILES), predict its ADMET profile.

* 22 ADMET Datasets in TDC. hERG blockers +Classification: predict whether a drug will

. ) . . block hERG or not.
« Binary Classification or Regression tasks

. . . *Regression: predict the Caco-2 cell effective
« Fixed Evaluation Metric Caco-2 permeability

* Scaffold split for test data =1=1=R (I EETE T «Classification: predict whether a drug will
Barrier) penetrate blood-brain barrier.
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Molecular Property Prediction: Current Approaches

Fingerprint Based ML
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q Molecular Property Prediction: Current Approaches

Fingerprint Based Graph Representation Based
ML ML

Supervised
Learning

Unsurpervised
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Models Deep Learning
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SimGCN: A New Approach towards Molecular Property Predictions

e How can we exploit the structural similarity of the molecules?

» Construct a Similarity Graph based on Tanimoto Similarity of the molecules

« Train a GNN (GCN, GAT) model on the similarity graph: Node Classification/Regression task.

Similarity Graph Construction
« Threshold Graph: link two drugs if their similarity > threshold

« KNN Graph: Connect each drug to its k most similar drugs

https://github.com/KatanaGraph/SimGCN-TDC
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SimGNN Pipeline for Molecular Property Predictions

Node Classification Based Approach: Domain-Specific Knowledge Infusion

Drug Y
CC(C)Nc1ceenc1N1CCN(C(=0)C2=CC3=C[C@H](NS(C)(=... 0.0
0=C1C=CC[C@@H]2[C@H]3CCCN4CCC[C@H](CN12)[C@H]34 0.0
0=C(c1ccc(OCC[NH+]2CCCCC2)ccl)cic(-c2ccc(O)cc2... 0.0 _
Cclcc2c(s1)Nc1ccccc1N=C2N1CCNCC1 1.0

CCN(CC)CCNC(=0)c1¢(C)[NHIc(/C=C2\C(=O)Nc3ccc(F.. 1.0

Katana RDKkit Node Features:
Slmllarlty Katana HLS module
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X3 layers @

9 aHll-@

\ 2/
input layer output layer

KATANA GRAPH™ |




Success of SImMGCN TDC ADMET Benchmarks

* SimGCN has the highest number of leading entries!

SimGCN vs Others
B SimGCN B Second Best

Number of Winning Entries

CNN

4.5%

Morgan + MLP
4.5%

RDKit2D + MLP
4.5%
AttentiveFP
4.5%
NeuralFP
4.5%
AttrMasking
13.6%

09

0.8

SimGCN o
36.4%

0.6

0.4

Bioavailability_Ma VDss_Lombardo hERG

(&)

Eontesciiied Tasks: absorption/distribution/metabolism/toxicity prediction

— e 27.3%

Datasets: Half Life Obach, Clearance Microsome AZ,
BBB Martins, Pgp_Broccatelli,
CYP2C9_Substrate_CarbonMangels etc.
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 Some of our entries at TDC leaderboard
(https://[tdcommons.ai/)

TDC.Bioavailability Ma Leaderboard

Success of SImGCN in TDC ADMET Benchmarks

TDC.hERG Leaderboard

Leaderboard Leaderboard

Rank Model Contact Link #Params AUROC 1 Rank Model Contact Link #Params AUROCT

1 SimGCN Suman Kalyan Bera  GitHub, Paper 103,000 0.748 + 0.033 1 SimGCN Suman Kalyan Bera  GitHub, Paper  1103,000 0.874 + 0.014
2 RDKit2D + MLP (DeepPurpose)  Kexin Huang GitHub, Paper 633,409 0.672 + 0.021 2 RDKit2D + MLP (DeepPurpose)  Kexin Huang GitHub, Paper 633,409 0.841+0.020
3 ContextPred Kexin Huang GitHub, Paper 2,067,053  0.671+0.026 3 AttentiveFP Kexin Huang GitHub, Paper 300,806  0.825 + 0.007
4 AttentiveFP Kexin Huang GitHub, Paper 300,806  0.632+0.039 4 AttrMasking Kexin Huang GitHub, Paper 2,067,053  0.778 + 0.046
5 NeuralFP Kexin Huang GitHub, Paper 480,193 0632+ 0.036 5 ContextPred Kexin Huang GitHub, Paper 2,067,053  0.756 + 0.023
6 CNN (DeepPurpose) Kexin Huang GitHub, Paper 226,625 0.613 + 0.013 6 CNN (DeepPurpose) Kexin Huang GitHub, Paper 226,625 0.754 + 0.037
7 Morgan + MLP (DeepPurpose) Kexin Huang GitHub, Paper 147785  0.581+ 0.086 7 GCN Kexin Huang GitHub, Paper 191,810 0.738 + 0.038
8 AttiMasking fisxinHuang GitHub;Peper’ 2,067,053 0577+ 0087 8 Morgan + MLP (DeepPurpose)  Kexin Huang GitHub, Paper 1477185  0.736 + 0.023
9 GCN KexiniHuang GitHub, Paper 191,810 0566:£0MS 9 NeuralFP Kexin Huang GitHub, Paper 480193  0.722 + 0.034
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Takeaways

® Chemical Data as graphs: Powerful unified representation

o  Unlocks new analytics and machine learning capabilities
o  Break data silos

Distributed computation at scale required to search billion scale enumerated datasets.
Unified platform for end-to-end pipelines

Katana Graph is building the platform for doing this at scale
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